3 research outputs found

    Predictive ability of a semi-mechanistic model for neutropenia in the development of novel anti-cancer agents: two case studies

    Get PDF
    Abstract In cancer chemotherapy neutropenia is a common dose-limiting toxicity. An ability to predict the neutropenic effects of cytotoxic agents based on proposed trial designs and models conditioned on previous studies would be valuable. The aim of this study was to evaluate the ability of a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for myelosuppression to predict the neutropenia observed in Phase I clinical studies, based on parameter estimates obtained from prior trials. Pharmacokinetic and neutropenia data from 5 clinical trials for diflomotecan and from 4 clinical trials for indisulam were used. Data were analyzed and simulations were performed using the population approach with NONMEM VI. Parameter sets were estimated under the following scenarios: (a) data from each trial independently, (b) pooled data from all clinical trials and (c) pooled data from trials performed before the tested trial. Model performance in each of the scenarios was evaluated by means of predictive (visual and numerical) checks. The semi-mechanistic PK/PD model for neutropenia showed adequate predictive ability for both anti-cancer agents. For diflomotecan, similar predictions were obtained for the three scenarios. For indisulam predictions were better when based on data from the specific study, however when the model parameters were conditioned on data from trials performed prior to a specific study, similar predictions of the drug related-neutropenia profiles and descriptors were obtained as when all data were used. This work provides further indication that modeling and simulation tools can be applied in the early stages of drug development to optimize future trials

    Predicting clinical benefit from everolimus in patients with advanced solid tumors, the CPCT-03 study

    Get PDF
    Background: In this study, our aim was to identify molecular aberrations predictive for response to everolimus, an mTOR inhibitor, regardless of tumor type. Methods: To generate hypotheses about potential markers for sensitivity to mTOR inhibition, drug sensitivity and genomic profiles of 835 cell lines were analyzed. Subsequently, a multicenter study was conducted. Patients with advanced solid tumors lacking standard of care treatment options were included and underwent a pre-treatment tumor biopsy to enable DNA sequencing of 1,977 genes, derive copy number profiles and determine activation status of pS6 and pERK. Treatment benefit was determined according to TTP ratio and RECIST. We tested for associations between treatment benefit and single molecular aberrations, clusters of aberrations and pathway perturbation. Results: Cell line screens indicated several genes, such as PTEN (P = 0.016; Wald test), to be associated with sensitivity to mTOR inhibition. Subsequently 73 patients were included, of which 59 started treatment with everolimus. Response and molecular data were available from 43 patients. PTEN aberrations, i.e. copy number loss or mutation, were associated with treatment benefit (P = 0.046; Fisher's exact test). Conclusion: Loss-of-function aberrations in PTEN potentially represent a tumor type agnostic biomarker for benefit from everolimus and warrants further confirmation in subsequent studies

    Predictive ability of a semi-mechanistic model for neutropenia in the development of novel anti-cancer agents: two case studies

    No full text
    Abstract In cancer chemotherapy neutropenia is a common dose-limiting toxicity. An ability to predict the neutropenic effects of cytotoxic agents based on proposed trial designs and models conditioned on previous studies would be valuable. The aim of this study was to evaluate the ability of a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for myelosuppression to predict the neutropenia observed in Phase I clinical studies, based on parameter estimates obtained from prior trials. Pharmacokinetic and neutropenia data from 5 clinical trials for diflomotecan and from 4 clinical trials for indisulam were used. Data were analyzed and simulations were performed using the population approach with NONMEM VI. Parameter sets were estimated under the following scenarios: (a) data from each trial independently, (b) pooled data from all clinical trials and (c) pooled data from trials performed before the tested trial. Model performance in each of the scenarios was evaluated by means of predictive (visual and numerical) checks. The semi-mechanistic PK/PD model for neutropenia showed adequate predictive ability for both anti-cancer agents. For diflomotecan, similar predictions were obtained for the three scenarios. For indisulam predictions were better when based on data from the specific study, however when the model parameters were conditioned on data from trials performed prior to a specific study, similar predictions of the drug related-neutropenia profiles and descriptors were obtained as when all data were used. This work provides further indication that modeling and simulation tools can be applied in the early stages of drug development to optimize future trials
    corecore